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Abstract
This study investigates the lane-keeping control of autonomous vehicles with an emphasis on the digital delayed nature
of the system. The vehicle dynamics are represented using a kinematic bicycle model and a hierarchical lane-keeping
controller is introduced with multiple delays in the feedback loop. An extension of the semidiscretization method
is presented, in order to perform the stability analysis of the digitally controlled vehicle with multiple discrete time
delays. The differences between the continuous approximation and the exact consideration of discrete time delays are
highlighted. We show that in certain cases, neglecting the effects of quantization can lead to significant inaccuracies,
especially when tuning the lower-level controller. The results are verified using a series of small-scale laboratory
experiments.
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1 Introduction
Over 90% of passenger car road accidents are at least
partially caused by human error (Treat et al. (1979);
Garnowski and Manner (2011)). Advanced driver assistance
systems and autonomous vehicles can potentially prevent
a significant number of these accidents, having a direct
impact on traffic safety (Olofsson and Nielsen (2020)). In
particular, by preventing unintended lane departures, lane-
keeping and lane changing controllers can help avoid one
of the most common types of road accidents (Kusano and
Gabler (2014)).

These autonomous driving functions rely on the precise
control of the lateral dynamics of the vehicle; therefore,
the design and analysis of steering controllers have
been a popular research area for several decades (Amer
et al. (2017); Fenton et al. (1976); Ackermann et al.
(1995)). Traditional methods include simple proportional
feedback control (Broggi et al. (1999)), the additional use
of feedforward terms (Takahashi and Asanuma (2000);
Cremean et al. (2006)), PID control (Marino et al. (2011)),
as well as optimal control techniques (Mobus and Zomotor
(2005)). Various nonlinear control methods have also
been successfully applied, such as feedback linearization
(Liaw and Chung (2008)), Lyapunov-based control design
(Rossetter and Gerdes (2006)) and sliding-mode control
(Choi et al. (2015)).

Despite the extensive research interest in vehicle steering
control, the effect of time delay is rarely investigated in
such systems (Liu et al. (2006); Heredia and Ollero (2007);
Hoffmann et al. (2007)). However, these controllers include
non-negligible time delays originating from various sources.
For example, the required measurement equipment (GPS,
camera image processing) often has low-frequency sampling
(Yi et al. (2013); Jo et al. (2015)). This, along with

communication delays, the computation time of the filtering,
localization and control algorithms, as well as the actuation
delays, can add up to several hundred milliseconds. This
can severely reduce the domain of stabilizing control gains;
therefore, not taking into account the effects of time delay
can easily lead to stability issues (Beregi et al. (2018)). In
addition, modern digital feedback control systems work with
quantized signals (Åström and Wittenmark (2013); Ogata
(1995)). Conversely, the occurring time delays should be
investigated accordingly (Insperger (2011)). The difference
between the time delays in continuous and digital systems
can have a non-negligible effect on the stability of the car.

This study investigates the dynamics of a hierarchical
lane-keeping controller with the explicit consideration of
feedback delay in both the lower-level and the higher-level
control loop. In addition, the effects of digital sampling
with zero-order hold are also investigated to quantify the
error with respect to a continuous approximation of the
time delays. In order to perform the stability analysis of the
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hierarchical digital control system with multiple time delays,
an extension of the semidiscretization method (Insperger
(2011)) is presented.

The results are verified using a small-scale experimental
measurement setup. Although all developed autonomous
driving functions should eventually be verified in real-
vehicle tests (Li et al. (2016)), these tests are usually
expensive and carry potential accident risks. Therefore,
laboratory experiments can be used as an intermediate step
to verify the theoretical calculations in a cost-effective way
(Gietelink et al. (2009)). For this purpose, a small-scale
experimental measurement setup was built, which makes the
testing of different lane-keeping control algorithms possible
(Vörös et al. (2021)).

The rest of the paper is organized as follows: in Sect. 2,
the investigated vehicle model is introduced and its equations
of motion are derived. In Sect. 3, the hierarchical lane-
keeping controller is presented, leading to a set of delay
differential equations characterizing the closed-loop system.
In Sect. 4, an extension of the semidiscretization method is
introduced, to perform the stability analysis of digital control
systems with multiple discrete-time delays. In Sect. 5, the
stability analysis of the vehicle model with the hierarchical
lane-keeping controller is performed, with a focus on the
differences between the continuous approximation and the
exact consideration of discrete time delays. A series of
validating measurements are carried out in Sect. 6 using
the experimental test rig and the results are compared to
the theoretical stability charts. The conclusions are drawn in
Sect. 7 and some possibilities for further research are also
highlighted.

2 Mechanical model of the car

The lateral dynamics of the vehicle is modeled with a planar
kinematic bicycle model, where the width of the vehicle is
neglected (see Fig. 1). In addition, we assume rigid wheels
with point contact at the ground, therefore no tire forces
and self-aligning moments are considered. The position and
orientation of the vehicle are described by the coordinates
XR and YR of the center of the rear axle (point R), as well as
the yaw angleψ. The steering angle is denoted by δ, while the
vehicle wheelbase is L. In order to account for the actuation
dynamics of the steering system, the moment of inertia of
the steering gear about the center of the front axle (point F)
is considered as J and the steering torque is denoted by T .

We choose the position coordinates of the rear axle, the
yaw angle of the vehicle and the steering angle as generalized
coordinates, leading to the generalized coordinate vector

q =
[
XR YR ψ δ

]ᵀ
. (1)

Since no tire deformation is considered in our model (i.e. no
side-slip occurs), the direction of the velocity vectors at the
front and rear axles are at all times determined by the rolling
direction of the wheels. This means that the velocity vector
vR at the rear axle is always parallel to the longitudinal axis
of symmetry of the vehicle, while the velocity vector vF at
the front wheels always points into the direction defined by
the steering angle. Based on the above considerations, the

Figure 1. Bicycle model with rigid wheels.

following two kinematic constraints can be formulated

ẊR sin(ψ + δ)− ẎR cos(ψ + δ)− Lψ̇ cos δ = 0,

− ẊR sinψ + ẎR cosψ = 0.
(2)

Furthermore, we assume that the longitudinal speed of
the vehicle is constant (|vR| ≡ v, corresponding to a rear-
wheel drive vehicle), which leads to the additional kinematic
constraint

ẊR cosψ + ẎR sinψ = v. (3)

The presence of kinematic constraints makes the vehicle
model nonholonomic. To derive the equations of motion of
the system, we use the Gibbs–Appell-method (Gantmacher
(1975)), which requires the definition of so-called pseudo-
velocities. Since the number of generalized coordinates is
four and the system includes three kinematic constraints, one
pseudo-velocity needs to be defined, which we choose to be
the steering rate

σ1 = δ̇. (4)

The three kinematic constraints in Eq. (2) and (3), as well
as the definition of the pseudo-velocity σ1 in Eq. (4) can be
solved for the time derivatives of the generalized coordinates:

ẊR = v cosψ, ẎR = v sinψ, ψ̇ =
v

L
tan δ, δ̇ = σ1. (5)

In addition, the Gibbs–Appell-equation leads to the fifth
equation of motion, which describes the steering dynamics:

σ̇1 =
T

J
. (6)

3 Hierarchical steering control
In this section, a hierarchical steering controller is introduced
(see Fig. 2), taking into account communication and
sampling delays. The goal of the controller is to ensure that
the vehicle follows a reference path, which is achieved by
feeding back the lateral position of the rear axle YR and
the yaw angle ψ. Assuming a straight-line reference path
along theX axis (YR ≡ 0, ψ ≡ 0), the higher-level controller
generates the desired steering angle using the proportional
gains kY and kψ as follows:

δ̃d(t) = −kY YR(t− τcom)− kψψ(t− τcom). (7)
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Figure 2. Block diagram of the hierarchical control scheme
used for the lateral control of the vehicle.

Table 1. Time delay parameter definitions

τcom :
time delay related to the higher-level controller
caused by sensor delay and computation time.

τnet :
communication delay in the network of the
lower- and higher-level controllers.

τact : actuation delay of the lower-level controller.

τLH :
combined lower- and higher level feedback
delay.

τL : lower-level feedback delay.

τLH :
mean value of the delay function τLH for
calculations in the continuous system.

τL :
mean value of the delay function τL for
calculations in the continuous system.

τ1 :
combined lower- and higher-level feedback
delay with the semidiscretization notation

τ2 : lower-level feedback delay with the semidis-
cretization notation

The time delay τcom includes the sensor delays, sampling
and computation times. The subscript com refers to
computation. The desired steering angle δ̃d is then sent to the
steering servo with the network delay τnet that is related to
the communication between the two controllers. This means
that the reference signal of the lower-level controller is
δd(t) = δ̃d(t− τnet). This controller calculates the steering
torque T that is required so that the actual steering angle δ
follows the reference value δd. This is achieved using the
proportional-derivative control law

T (t) = −P (δ(t− τact)− δd(t− τact))−Dδ̇(t− τact),
(8)

where P and D denote the lower-level control gains, while
the actual and desired steering angles δ and δd are sampled
with the time delay τact, where the subscript act refers to
actuation. The summary of the delay parameters can be
found in Tab. 1. For the sake of simplicity, the reference
steering rate in Eq. (8) is set to zero.

The control gains P andD can be normalized with respect
to the moment of inertia J , leading to the reduced control
parameters

p =
P

J
, d =

D

J
. (9)

Furthermore, we introduce the time delay values related to
the control loop as (see Fig. 2)

τL = τact, τLH = τcom + τnet + τact. (10)

Therefore, in the closed-loop system, when the hierarchical
steering controller is enabled, the dynamics of σ1 in Eq. (6)
modify to

σ̇1(t) =− p (δ(t− τL) + kY YR(t− τLH)

+kψψ(t− τLH))− d σ1(t− τL).
(11)

4 Semidiscretization method for digital
controllers with multiple delays

The lane-keeping controller in Sect. 3 was presented in
continuous time, but when implemented in practice, a digital
controller will have to be used. This means that due to
the effects of digital sampling, the time delays will not
remain constant, but they will be continually changing
according to time periodic sawtooth-like functions (see
Fig. 3). A powerful method for performing the linear stability
analysis of such digital systems with time periodic time
delays is the semidiscretization method (Insperger (2011)).
First, we present a brief review of the general concept of
semidiscretization for time delay systems, then we show how
it can be extended for the case of multiple discrete delays.

4.1 General concept of semidiscretization
Consider the linear system with multiple continuous point
delays

ẋ(t) = Ax(t) +

g∑
j=1

Bju(t− τj),

u(t) = Dx(t),

(12)

where x ∈ Rn is the state vector, u ∈ Rm is the input, A,
Bj and D are appropriately sized constant matrices, and τj
are constant point delays. Note that systems with distributed
delays, as well as time-dependent parameters can also be
approximated in the above form, see Insperger (2011) for
details.

By introducing the discrete time scale ti = ih, where
i ∈ Z and h is the discretization step, the semidiscretization
method approximates the delayed terms as constant in each
discretization interval [ti, ti+1):

u(t− τj) ≈ u(ti−rj ) = u((i− rj)h), (13)

where rj = int(τj/h) and int denotes the integer-part
function. The resulting system can be considered as a set
of ordinary differential equations with piecewise constant
forcing. Using the variation of constants formula, the
solution of the semidiscrete system over one discretization
step can be formulated as

xi+1 = Pxi +

g∑
j=1

Rjui−rj , (14)

where xi = x(ti), ui = u(ti) and

P = eAh, Rj = Bj

∫ h

0

eA(h−s)ds. (15)
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Figure 3. Illustration of the sawtooth-like time periodic nature of
time delays in digital systems.

With the introduction of the augmented state vector

zi =
[
xi ui−1 ui−2 . . .ui−r

]ᵀ
, (16)

where r = max(rj), the solution of the system can be
formulated as the discrete map

zi+1 = Gzi, (17)

with the (n+ rm)× (n+ rm) coefficient matrix

G =




P 0 . . . 0 0
D 0 . . . 0 0
0 I . . . 0 0
...

. . .
...

...
0 0 . . . I 0

+

g∑
j=1

1 rj r


0 0 . . . Rj 0 . . . 0
0 0 . . . 0 0 . . . 0
0 0 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . 0

.

(18)

G can be considered as a finite dimensional matrix
representation of the infinite dimensional monodromy
operator of the original time delay system in Eq. (12), which
can be used to assess stability. If all eigenvalues of G are
inside the unit circle of the complex plane, the trivial solution
z = 0 of the original system is asymptotically stable.

The constant approximation of the delayed terms
in Eq. (13) corresponds to the sawtooth-like periodic
approximation of the constant time delays, as in Fig. 3.
Therefore, if there is only one delay in the system (g = 1)
and the discretization time is set to be equal to the sampling
time (r = 1), the semidiscrete system can be used as a
model for digital sampling with zero-order hold (Åström
and Wittenmark (2013); Ogata (1995); Stépán (2001)). This
is, however, more complicated when there are multiple
delays present in the system, as in e.g. the hierarchical
controller presented in Sect. 3. Therefore in the following,
we present an extension of the semidiscretization method in
order to handle digital controllers with multiple delays. The
proposed method will then be used in Sect. 5 to perform the
stability analysis of the closed loop vehicle model with the
hierarchical lane-keeping controller.

4.2 Extension for systems with multiple
discrete time delays

If there are multiple discrete delays in a digital system,
each time delay can be characterized by a separate periodic
sawtooth-like function. For the jth time delay τj , define
the minimum and maximum of this periodic function as
τj,s = τc,j + τd,j and τj,e = τc,j + 2τd,j respectively, as in
Fig. 3. The subscripts c and d refer to the continuous and
digital parts of the delay functions respectively; furthermore,
subscripts s and e mean the starting value and end value of
the sawtooth-like time periodic functions. The time period
of the τj(t) function will then be τe,j − τs,j . The following
integers can be introduced to denote the rounded length of
τs,j and τe,j in terms of multiples of the discretization step
h:

rs,j =

{
floor

( τs,j
h

)
, if

τs,j mod h
h ≤ 1

2

ceil
( τs,j
h

)
, if

τs,j mod h
h > 1

2

,

rj,e =

{
floor

( τe,j
h

)
, if

τe,j mod h
h ≤ 1

2

ceil
( τe,j
h

)
, if

τe,j mod h
h > 1

2

,

(19)

where mod is the modulo function. Furthermore, we define
the difference of these values

rstep,j = re,j − rs,j , (20)

which gives the rounded time period of the periodic delay
function in terms of h. A full period of the whole system (the
principal period) is only completed when all the individual
periodic τj(t) functions are at the end of their time period.
Therefore the length of the principal period rlcm in terms of
discretization steps can be calculated as the least common
multiple (lcm) of the individual time periods rstep,j :

rlcm = lcm(rstep,j)− 1. (21)

In order to assess the stability of the system, the
matrix representation of the monodromy operator must
be determined as the solution matrix of the semidiscrete
system over the principal period. This involves rlcm
discretization periods, therefore if the solution matrix over
one discretization step is denoted by G, then the monodromy
operator can be approximated by the geometric series

K =

rlcm∏
k=1

Gk, (22)

and the monodromy mapping over one principal period will
be

zi+1 = Kzi. (23)

In order to account for the sawtooth-like periodicity of
each individual time delay, the positions of Rj will be
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shifting in the matrices Gk, i.e. each Gk will be different:

Gk =




P 0 . . . 0 0
D 0 . . . 0 0
0 I . . . 0 0
...

. . .
...

...
0 0 . . . I 0

+

g∑
j=1

1 lj r


0 0 . . . Rj 0 . . . 0
0 0 . . . 0 0 . . . 0
0 0 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . 0

,

(24)

where the location of the jth coefficient matrix Rj in the
upper right block of Gk will be shifting in each iteration
according to

lj = rs,j + k mod rstep,j (25)

and
r = max(re,j)− 1. (26)

In the first iteration (k = 0), the position of the matrices
Rj will be rs,j , corresponding to the minimum of each
sawtooth function. As the iteration continues, the position of
every Rj will increase until the corresponding maximum re,j
(representing the peak of the jth sawtooth function), after
which it jumps back to its initial position rs,j . A complete
period is reached (k = rlcm − 1) once all the coefficient
matrices reach their end positions re,j at the same time.
This requires that all rs,j and re,j values are multiples of
the discretization step h, which is ensured by the floor and
ceiling functions in Eq. (19). With the multiplication of the
individual Gk matrices, the matrix of the discrete mapping
K can be calculated. If all the eigenvalues of K are inside
the unit circle of the complex plane, the system with multiple
discrete time delays is asymptotically stable.

Note that while the constant approximation of the delayed
terms over the discretization step h inherently introduces a
sawtooth-like periodicity of length h in each time delay, the
shifting position of the coefficient matrices Rj in Eq. (24)
ensures that the longer time period of discrete delays that are
larger than h can also be considered.

5 Stability analysis
In this section, we perform the linear stability analysis of the
vehicle model with the hierarchical lane-keeping controller
as defined in Eq. (5) and (11), for the steady state of
rectilinear motion along the X axis. This corresponds to the
state variables

XR = vt, YR ≡ 0, ψ ≡ 0, δ ≡ 0, σ1 ≡ 0. (27)

Since the lane-keeping controller in Sect. 3 is based on only
the lateral position YR and the yaw angle ψ, the equation of
XR can be decoupled from the rest, leading to the reduced
state vector

x =
[
YR ψ δ σ1

]ᵀ
. (28)

Linearizing the remaining equations of the closed-loop
system around (27) leads to the system of linear differential
equations

ẋ(t) = Ax(t) + BLx(t− τL) + BLHx(t− τLH), (29)

where

A =


0 v 0 0
0 0 v

L 0
0 0 0 1
0 0 0 0

 , BL =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 −p −d

 ,

BLH =


0 0 0 0
0 0 0 0
0 0 0 0
−pkY −pkψ 0 0

 .
(30)

In the following, we perform the stability analysis of the
system in order to uncover the regions of control gains that
can stabilize the straight-line motion of the vehicle. The
derivations will be performed for both the continuous and
the discrete-time control case, so that the difference in results
between the two modeling approaches can be highlighted.

5.1 Continuous case
The stability boundaries for continuous time delays can
be calculated using the D-subdivision method (Insperger
(2011)). In the continuous case, let us represent the
periodically changing digital time delays with their means,
which will be denoted by overbars, i.e. τL and τLH will be
constant, continuous time delays. The linearized system in
this case can be written as

ẋ(t) = Ax(t) + BLx(t− τL) + BLHx(t− τLH), (31)

which leads to the characteristic equation

D(λ) := det
(
A + BLe−λτL + BLHe−λτLH

)
= 0, (32)

where λ ∈ C is the characteristic exponent. Evaluating the
determinant in Eq. (32) results in

λ4 + λ3de−λτL + λ2pe−λτL

+ λ
pkψv

L
e−λτLH +

pkY v
2

L
e−λτLH = 0.

(33)

If the characteristic exponent is zero, i.e. λ = 0, static loss of
stability will occur. This happens if

p kY v
2

L
= 0, (34)

namely, the vehicle will lose its stability without oscillations
at the control gain values p = 0 and kY = 0. In addition,
oscillatory stability loss can happen if a complex conjugate
pair of characteristic roots crosses the imaginary axis at λ =
±iω. Substituting λ = iω into the characteristic equation in
Eq. (33) and separating the real and imaginary parts of the
resulting equation, the boundaries of dynamic stability loss
can be expressed in terms of two arbitrary system parameters,
as a parametric function of the oscillation frequency ω.
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Considering the control gains of the higher-level
controller, the stability boundaries are

kY =
ω2L

pv2
(
−ω2 cos(τLHω) + ωd sin((τL − τLH)ω)

+p cos((τL − τLH)ω)) ,

kψ =− ωL

pv

(
ω2 sin(τLHω)− ωd cos((τL − τLH)ω)

+p sin((τL − τLH)ω)) ,

(35)

while in terms of the lower-level control gains, stability loss
occurs at

p =
(
ω4L cos(τLω)

)
/
(
Lω2 + ωkψv sin((τL − τLH)ω)

−kY v2 cos((τL − τLH)ω)
)
,

d =
(
ω
(
ω2L sin(τLω) + ωkψv cos(τLHω)

−kY v2 sin(τHω)
))
/ (ω(ωL+ kψv sin((τL − τLH)ω))

−kY v2 cos((τL − τLH)ω)
)
.

(36)

5.2 Digital system
For the stability analysis of the discrete-time case, we used
the semidiscretization method as detailed in Sect. 4.2. The
linearized system in Eq. (29) can be brought to the form
in Eq. (12) by defining D as the four-dimensional identity
matrix, i.e. u = x. In the digital case, the value of the time
periodic delay τ2 = τL of the lower-level controller ranges
from τact to 2τact, while the combined delay τ1 = τLH of the
two controller levels has a minimum of τcom + τnet + τact
and a maximum of τcom + 2τnet + τact, as illustrated in
Fig. 4. According to Sect. 4, τc,1 = τcom + τact, τd,1 = τnet
and τc,2 = 0, τd,2 = τact are the parameters of the combined
and the lower-level time delay functions respectively.
In the experimental setup detailed in Sect. 6, the higher-
level control delay τcom can be altered programmatically.
The sampling frequency between the lower and higher-level
controllers is 50 Hz, corresponding to τnet = 20 ms, while
the sampling frequency of the actuator is 330 Hz, leading
to τact ≈ 3 ms. With the consideration of these delay values,
the discretization time step was chosen to be h = 1 ms during
the calculations.

5.3 Comparison
Figure 5 (i) shows the stability charts of stabilizing control
gains for both the continuous and discrete time delay cases.
The stability charts were generated using the parameter
values listed in Tab. 2, corresponding to the experimental
setup in Sect. 6. The delay of the higher-level controller was
set to τcom = 1 ms.
The continuous approximation of the discrete delays can be

calculated as the mean value of the sawtooth-like functions.
This corresponds to τL = 3

2τact and τLH = τcom + 3
2τnet +

τact (see Fig. 4).
Figure 5 (i) (a) shows the stable region of the higher-level
control gains kY and kψ .

It can be seen that there is negligible difference in the
stability boundaries between the continuous and the digital
system. The difference is more pronounced in the plane of
the lower-level control gains p and d in Fig. 5 (i) (b), but the

Figure 4. Sawtooth-like time-periodic delay functions of the
digital system. The time delay of the lower- and higher-level
controller together can be seen in (a) and the lower-level
controller in (b).

Table 2. Parameter values of the experimental setup.

Parameter Value

Vehicle wheelbase (L) 0.238 m
Lower-level steering control
proportional gain (p) 380.53 1/s2

Lower-level derivative gain (d) 31.71 1/s

Communication delay (τnet) 20 ms

Lower-level control delay (τact) 3 ms

continuous approximation is still reasonably accurate.
In order to find the best performance point of the system,
where the most highly damped system response can be
achieved, we introduce the maximum normalized eigenvalue
of the discrete mapping as

η = |µmax|
1

rlcm , (37)

where µ denotes the eigenvalues of the discrete mapping.
The normalization is necessary only, when the periods of the
delay functions change in the investigated stability region.
The global optima in Fig. 5 (i) are denoted by red dots. These
points coincide for the continuous and digital systems. The
parameters of the best performance points from Fig. 5 (i) can
be found in Tab. 3.
Based on these results, it is advisable to choose relatively
smaller control gains when tuning the higher-level controller
(Fig. 5 (i) (a)). Even though the system would remain linearly
stable with larger values of kY and kψ , the larger gains
would not lead to better control performance. In case of
the lower-level controller (Fig. 5 (i) (b)), the optimal gains
in terms of system response are very close to the stability
boundary, which could easily lead to stability loss due to
e.g. modeling uncertainties or control gain perturbations.
Therefore, a balance needs to be found between system
response and robustness against undesirable effects when
tuning the lower-level controller.

Figure 5 (ii) shows the effect of increasing the higher-
level control delay τcom on the stable domains. Larger delay
values significantly reduce the stable region in the plane
of the higher-level control gains kY and kψ (see Fig. 5
(ii) (a)), while there is negligible difference between the
stability boundaries of the continuous and the digital system.
The stable region of the lower-level control gains p and d
(Fig. 5 (ii) (b)) is not affected as much by the value of
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Figure 5. (i) Comparison of the
stability boundaries for the
continuous and digital systems.
The time delays of the
continuous and digital systems
are τL = 4.5 ms, τLH = 34 ms
and τcom = 1 ms, τnet =
20 ms, τact = 3 ms respectively.
The red markers give the best
performance controllers, which
coincide for the continuous and
digital systems in both parameter
planes. (ii) Parameter analysis
investigating the sampling time
delay τcom. The other time delays
are τnet = 20 ms, τact = 3 ms.
The parameters of the best
performance points for different
sampling time delay τcom values
can be found in Tab. 3. The
parameter planes are (a)
kY − kψ and (b) p− d. The
velocity for all the results is
v = 10 m/s. The continuous and
dashed lines show the results of
the digital and continuous
systems respectively.

Table 3. Parameters of the best performance points for different
sampling time delays τcom in the kY − kψ and p− d planes. In
the first column of the table, system d corresponds to the digital
and c to the continuous system. The system parameters are
v = 10 m/s, L = 0.238 m. The control parameters are
p = 380.53 1/s2, d = 31.71 1/s in the kY − kψ plane and
kY = 0.017 1/m, kψ = 0.101 in the p− d plane

kY − kψ plane

system τcom (ms) kY (1/m) kψ (1) η

d/c 1 0.017 0.1010 0.9955
d/c 5 0.017 0.1010 0.9959
d/c 10 0.017 0.1010 0.9962
d/c 50 0.012 0.0827 0.9971

p− d plane

system τcom (ms) p (1/s2) d (1/s) η

c/d 1 693.88 51.43 0.9960
c/d 5 693.88 51.43 0.9959
c/d 10 693.88 51.43 0.9959
d 50 1387.76 51.43 0.9952
c 50 2081.63 73.47 0.9952

τcom, but the difference between the stability boundaries
of the continuous and the digital system is becoming more
pronounced as τcom is increased. In the case of τcom =
50 ms, neglecting the effects of quantization can lead to
a significant overestimation of the stable domain. This
implies that taking into account the quantized nature of the
digital system is more important when tuning the lower-level
controller, especially in the case of larger time delays.

6 Measurement results
A series of measurements was carried out using the
experimental test rig shown in Fig. 6 (see Vörös et al.
(2021) for more details). The measurement setup consists
of a small-scale model vehicle and a conveyor belt. The
vehicle is anchored to the frame of the conveyor belt using
a custom suspension mechanism that only constrains the
displacement of the car in the longitudinal direction of the
belt, while leaving the rest of the degrees of freedom free.
The suspension system includes a roller bearing linear guide
with a linear encoder, as well as a 3D printed mechanism
with ball bearings and magnetic rotary sensors. The running
conveyor belt provides the longitudinal velocity of the
vehicle, while the steering torque is generated by a servo
motor using the controller in Eq. (8). The sensor setup
provides measurements of the lateral position and yaw angle
of the vehicle, and a National Instruments (NI) CompactRio
9039 unit is used for data acquisition and processing. The
higher-level controller in Eq. (7) is also running on the
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Figure 6. Measurement setup for the validation
process. It consists of a conveyor belt, a linear
guide and the small-scale model of the car. The
conveyor belt can run with constant velocities.
The guide constrain the displacement in the
longitudinal direction, while leaving the rest of the
degrees-of-freedom of the car free.

Figure 7. Measurement results for
velocities (a) v = 1.5 m/s and (b)
v = 2.5 m/s in the kY − kψ plane for
τcom = 1 ms. The rest of the parameters
are listed in Tab. 2. The green circles
and red crosses are stable and unstable
measured points respectively. The black
line is the analytical result for the digital
controller.

NI control unit, where the control gains kY − kψ and the
sampling delay τcom can be adjusted programmatically. The
values of the lower-level control gains and the delays τnet
and τact are fixed, as listed in Tab. 2.
The validating measurements were carried out with
velocities v = 1.5 m/s and v = 2.5 m/s, and the stability
of the system was assessed for different sets of kY –kψ
values. The measurement points along with the stability
boundary of the digital model are plotted in Fig. 7. The
shape of the experimentally determined stability boundaries
show good correspondence with the analytical solution, but
there are some large quantitative differences at certain parts
of the stability charts. These differences can potentially be
explained by the simplifications of our mechanical model:
on the one hand, neglecting the tire side forces and side
slip angles can have a strong effect on the dynamics of the
vehicle. On the other hand, some dissipation effects due
to viscous damping and friction might be present in the
linear guide, which could also alter the results. Moreover,
nonlinear effects not investigated in this study can make it
hard to measure the exact stability boundaries. Nevertheless,
the analytical results still provide a reasonably accurate
prediction of stabilizing control gains. In future studies the
results can be improved, and the system can be investigated
more in detail. A more complicated car model can be used
with elastic wheels that take the forces and friction into
account. Furthermore, the model of the lower-level control
scheme can be improved as well.

7 Conclusion

This study investigated the stability of a lane-keeping
controller with hierarchical digital feedback control. The
single track kinematic model of cars was used in which
the steering dynamics was also considered. The differential
equations were derived and the linearization provided the
mathematical expressions of the vehicle model. Delayed
control laws of a simple lane-keeping controller was
implemented.

To construct linear stability charts of the controller,
the theory of the semidiscretization method was expanded
in a way, that digital systems with several delays can
be investigated. Using this method together with the D-
subdivision method, the stability charts of both continuous
and digital systems have been determined highlighting the
effects of quantization on the stability of the system.

The results showed that for small higher-level sampling
time delays (τcom), the difference is negligible both in the
plane of the lower- and higher-level control gains. However,
the parameter analysis implies that for increasing τcom
higher-level sampling time delays, the differences between
the continuous and digital systems in the plane of the
lower-level control parameter gains p, d are getting more
pronounced and non-negligible.

A measurement setup was built with a hierarchical control
scheme, which is closely related to the ones used in real,
full scale vehicles. Theoretical stability limits of the digital
system were compared with the measurement results. The
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measured and calculated stability properties showed good
correspondence.
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Åström KJ and Wittenmark B (2013) Computer-controlled systems:
theory and design. Courier Corporation.
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